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FOREWORD

This document represents the final progress report on the NASA
research grant NGR 44-001-027, The report is divided into three parts,
A summary of each section is presented below.

Part-1I is a rather thorough treatment of an algorithm which was de-
veloped to assist in‘the development of cost estimating relationships,
The general application is to permit a minimum sum of squares approach
to fitting a cost estimating relationship, based upon the constraints of
minimizing or maximizing the variable costs in a hardware development
program with the coefficients being restricted to non-negative values,

Part II is an extension of the run-out cost estimation problem with
generalized constraints placed upon the least-squares estimation of the
polynomial being used to represent percent cost-percent time of the pro-
gram, The technique developed uses a weak constraint of non-negative slopes
on the tangent to the cumulative cost curve, This procedure provides the
minimum least squares possible under this constraint,

Part III is a new area of development in the cost research grant in
that it is directed toward relating hardward deliveries to cost and the

segregation of variable and non-variable costs,
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CHAPTER I

INTRODUCTION

A. The Problem

Response surface analysis in operational research is concerned
with the relationship of a 'response', y, and a number of 'inputs'

X5 Koy eee 5 Xpo Often this relationship can be approximated by a
mathematical equation which is a so-called second order polynomial in
the X e Such a polynomial involves only terms of the form X;s xi, and
Xixj° The basic task in response surface analysis is to determine the
unknown coefficients of this second order response surface, using
pilot data in which for a number of 'experiments' associated inputs X,
and outputs y have been recorded.

The customary technique of estimating these coefficients is by
'least squares'. Frequently, however, additional information about
the response surface is available. In this dissertation techniques
will be developed which modify the above least squares procedure so
that such additional information, of a specific type, can be utilized.
The utility of the procedure when applied to a test of the hypothesis
that the response surface is of a special type will also be demon-
strated.

Since the least squares procedure when applied to a linear model
requires the minimization of a certain quadratic form, a generai pro-
cedure for minimizing a quadratic form subject to certain restrictions

is required. The specific problem to be considered follows.



Consider a set of N responses Yo t=1, 2, ... , N and associ-
i ctors of the X' = (x e e
ated input ve form t ( 16 Xopo . th) and
assume that the expected response E(yt) is a second order function of
the inputs X with unknown coefficients. More specifically, assume

the model

E(yt) = 800 + Bi Xt + Xé BXt (1)
where Bi = (810, cee s Bko) and B = (Bij), i,j =1,... , k. Further,
assume that Ve E(yt) = e where the e_ are independent, normal
variates with mean zero and variance 02,

Suppose now that it is known that the matrix B is positive semi-
definite (or negative semi-definite). Such situations frequently
occur in the final stages of response surface analysis, see Davies
(1956), or again in 'production economics', see Heady and Dillon(1961),
when it is known that a model for a multiple-input production function
is meaningless if it has a saddle-point.

The problem then is to estimate the unknown parameters Bi"
i,j=0,1, ... , k subject to the restriction that the matrix B is
positive (or negative) semi-definite. The least squares principle is
to be used, so that an equivalent statement of the problem is to mini-
mize, as a function of Bij’ the quadratic form

N

Qe =& (y, - By )’

=1 (2)

subject to the restriction that E(yt) is a positive (or negative)

semi-definite quadratic form. This problem is solved in Chapter II.



In addition, once a procedure for estimating the Bij is estab-
lished, a related problem will be considered. Suppose that instead
of knowing that B is a semi-definite matrix it is desired to test
the hypothesis that B is semi-definite. That is, it will be of
value in response surface analysis to have the capability of testing
the hypothesis that the surface is of a type that does not have a
saddle-point or, even more importantly, that the surface possesses a
unique minimum or maximum. Procedures for testing such hypotheses
are discussed in Chapters III and IV.

The solution of both the problems described above will employ

a convex programming algorithm developed by Hartley and Hocking (1963).

A brief description of the algorithm as applied to the problem at

hand is found in Chapter II.

B. Historical Background
Before considering the general question of estimation of

parameters under constraints it is of interest to review the method
of least squares as applied to the problem of unconstrained esti-
mation. Consider then the general linear model

Y=XB+e (3)
where Y is an Nx1 vector of observations, X is an Nxn matrix of
known constants, B is an nxl vector of unknown constants or para-
meters which are to be estimated, and e is an Nxl vector of errors

R , 2
with the property thet e ~ MVN(O, o I).



Under these conditions the least squares procedure will be
equivalent to the method of maximum likelihood. The best linear
unbiased estimate of the unknown vector B is obtained by minimizing

Q(B) = e'e = (Y - XB)'(Y - XB). (4)
The vector of estimates is

B = x'R)7X'Y , (5)
and the properties of these estimates are well-known, see Graybill
(1961).

If now there are restrictions imposed on the parameter vector R
in the form of a set of p linear equations, where p < n, the least
squares solution can be obtained by the method in (4) and (5) after
a simple linear transformation. The properties of these estimates
are also known (Graybill(1961)).

The two problems mentioned above might be called the 'classical'
least squares problems, whose solutions have been known since before
1900. If now we regard the parameter vector B to be restricted to a
convex subspace of n-dimensional Euclidean space, En’ the problem takes
on a more 'modern' aspect. If the problem were to minimize a linear
function subject to linear inequalities, we have what is known as a
linear programming problem. A general method for solution of this
problem, called the Simplex method, has been available since 1958,
see Dantzig (1948).

More generally the problem of finding the extrema of functions
subject to convex restrictions is called a mathematical programming

problem. A good review of current methods and results in that area



may be found in Dantzig (1963) and Graves and Wolfe (1963).

The particular problem of this paper deals with a quadratic
objective function, the function which is to be minimized, subject to
the restriction that B lies in a convex subspace of En. Now if the
subspace, S, can be specified by a finite set of linear inequalities
the problem would be called a quadratic programming problem. Various
solutions to such a problem have been developed, examples being those
of Beale (1955) and Wolfe (1959). Since standard quadratic program-
ming techniques will be found inapplicable to the problem at hand,
they will not be discussed in detail here.

A particular application to a statistical problem of this type
can be found in Lewish (1963). While the problems considered in the
Lewish paper are in some ways similar to those considered in this
dissertation, and in fact some of Lewish's results apply directly to
the current problem, Lewish was only considering problems to which
known quadratic programming techniques could be applied. The large
contribution of Lewish was to determine the statistical properties of
the estimates so obtained, an area of research that had been largely
ignored by workers in the field of mathematical programming.

It will be shown in Chapter II that while the restriction space
S is convex for our particular problem it cannot be specified by a
finite set of linear inequalities. Thus, while the objective function
is quadratic, some technique other than quadratic programming must be

used.



While the specific estimation problem of this dissertation has
received little attention in available literature, the general area
of response surface analysis has enjoyed more popularity, especially
gince 1951,

An early paper in the same vein as what is now known as response
surface analysis is that of Rice (1939) in which an expression is
derived for the probability that a random function, the parameters
being random with known distribution, of a single variable possesses
a maximum in some small rectangular region. While subsequent research
on response surfaces has followed a different path, it will be seen
that the discussion in Chapter IV of this paper bears some resemblance,
in a multivariate sense, to Rice's original idea.

The article more generally regarded as being among the first to
broach the quesfion of the experimental determination of optimum con-
ditions is the paper by Hotelling (1941). Hotelling contributed the
questions answered by Box and Wilson (1951) in their classic paper,
namely those of how to approach a stationary point and how to find it
once in its neighborhood. Here the estimation of parameters was
firmly established as the basic operation in respomnse surface analysis.

Aitchison and Silvey (1958) discussed the asymptotic distribution
of a 'restricted maximum liklihood estimator' as well as a test of the
hypothesis that the true parameter lies in the subset specified by the
linear restriction. Theil (1963) considered the question of prior
information in a regression context. He also considered a test of the

hypothesis that prior and sample information are in agreement with



each other. It will be noted that the preceding two papers included
tests of hypotheses of a type that we will be considering. However,
neither affords a test for the specific hypothesis that will be tested
in this dissertation.

A recent paper by Judge and Takayama (1966) applies quadratic
programming to regression problems with various specified linear in-
equality restrictions. Judge and Takayama apparently have solved such
problems for a wide variety of possible restrictions but the case of
infinitely many linear restrictions, as we have here in our problem,
is not amenable to solution by their methods.

In the convex programming algorithm of Hartley and Hocking (1963)
is found the means of solution for the estimation problem, and as will
be made apparent, the hypothesis test problem as well. Since the
Hartley-Hocking algorithm requires that the constraints be specified
by convex functions, it will be made clear in Chapter II why an
infinity of linear restrictions are specified rather than a simpler
description of S which does not consist wholly of convex functions.

Another paper warranting mention as an illustration of a situ-
ation where the experimenter may well have used the results of Chapter
II is that of Tramel (1963). Tramel writes of an experiment conducted
by Mississippi State University scientists to determine the economi-
cally optimum levels of three chemical fertilizers for cotton.
Twenty-six 'production functions' were fit by standard least squares
with the result that fourteen of the twenty-six functions had "illo-

gical signs" for some of the parameters. The precise difficulty was



that some of the second-degree terms involving a single variable had
negative coefficients. The conclusion reached was,

"...the usefulness of continuous functions as a means of esti-

mating response surfaces in cotton fertility experiments is

questionable. ...Form-free estimation of points on the response

surface would appear to be the preferred alternative."

It would seem that in the experiment described above there was
some reason to begin with the assumption that a good approximation to
the actual production function would be a continuous function, else
there would have been no attempt to estimate its parameters. The
original assumption apparently was abandoned not because it was wrong
but because it was impossible to obtain parameter estimates compatible
with the prior knowledge that the production function should be a semi-
definite quadratic form in the input variables.

Apparently the specific hypotheses test we will make has not been
discussed in available literature. Probably this is because the esti-
mation problems required had not been solved. Hopefully, now that the
problem of parameter estimation is solved and a test procedure for the

hypothesis has been proposed, experimenters will want to both use and

improve upon these initial results.



CHAPTERII

LEAST SQUARES FIT OF DEFINITE QUADRATIC FORMS

A, Description of the Problem

The model for the estimation problem was described in section
I(1). Suppose now that is is known that the matrix B of model I(1)
is positive (or negative) semi-definite. Since the results to be
derived apply to either case with only minor differences in formula-
tion we will henceforth suppose only that B is positive semi-definite.

The problem is to estimate the Bij’ i, =0, 1, ... , k, subject
to the above restriction, in such a fashion that the estimates have
desirable statistical properties.

A procedure that will be shown to lead to such estimates is that
of 'restricted least squares'. Specifically, the method will be to
find the vector B* which minimizes the quadratic

Q(B) =
t

N~ =

(v, - Bz )° (1)
1

subject to the condition that B* = (ij), i,j=1, ... , k is positive
semi-definite, where B is the vector of all unknown parameters in
E .
(y,)
In section II.B it is shown that the requirement that the matrix
B is semi-definite restricts the Bij’ i,j =1, ... , k to a convex
k+1 . . .
subset, say S, of the ( 2 )-dimensional B-space and hence the estima-
tion of the Bij by minimization of the quadratic (1) subject to this

restriction is a convex programming problem.



The particular specification of the subset S will be of great
importance to the practicability of solution of the problem and merits
some discussion. Perhaps the more familiar mode of specification of
S is the set of inequalities arising from the condition that all prin-
cipal minors of the matrix B have non-negative determinants. Such
specification does result in a finite number of inequality restrictions
on functions of the Bijo However, although the region S defined by
these inequalities is a convex region the functions defined by the
determinants are not, in general, convex. Thus we have the rather
unusual situation of a convex region being specified by functions
which are not necessarily convex functions. A simple example is pre-
sented below to illustrate this situation.

Consider the positive definite matrix

a a
P (2)
ay a,
where a; > 0, a, > 0, aja, — ajag 0. Let fl(A) =a), fZ(A) =3,
and f3(A) = ala4 - a2a3. Now the definition of a convex function f
over a set S requires that, for any two points Pl, P2 in S,
£OP, + (1 - VP, < AM(P) + (1 - VE(R) (3)

for all X such that 0 < X < 1. It is easily verified that fl > 0

and £, > 0 are in fact convex functions. We will now show that

2
f3 > 0 is not convex.
Let
1 2 1 3
A = , A = (4)
L i2 s 2 13 10
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so that the elements of A, and A, are seen to lie in S; that is, A

1 2 1
and A2 are positive definite, Then
f3(Al) =1, f3(A2) =1 . (5)
Let A = 1/2 . Then
1 5/2
M+ (1= DA, = . (6)
5/2 15/2
But
£,00) + (1 - D4, =5/4 7
while
Af3(Al) + (1 - A)f3(A2) =1 . (8)

From (7) and (8) we observe that for the two positive definite

matrices Al and A2

f3(>\Al + (1 - A)Az) > AfB(Al) + (1 - A)f3(A2) 9
for the particular A chosen so that 0 < A < 1. Then f3 is not a
convex function.

The importance of the above discussion to the problem at hand
lies in the fact that the usual convex programming procedures require
the region S to be specified by a set of convex functions. In parti-
cular the algorithm of Hartley and Hocking (1963) contains this
requirement.

There is, however, another way to specify the condition that the
matrix B be positive semi-definite. The linear conditions on the
Bij given by

v'Bv > 0 (10)

for all k-vectors v such that v'v = 1 also specifies that B is positive




[
[S%]

semi-definite. The description of S is in terms of simpler, linear
functions of the Bij but carries with it the apparent disadvantage
that the number of such functions required to specify S is infinite.
Hence with this description the standard quadratic programming tech-
niques do not apply. It will be shown, however, that the Hartley-
Hocking algorithm is singularly unperturbed by such an infinity of
constraints, so that the problem will be formulated in section II.C

with the restrictions specified by (10).

B. The Convexity of the Restraint Space S
. . k+1 . . ..
A point in the ( 2 )-dimensional space of the Bij’ i,j=1,...,k
may be represented by a symmetric kxk matrix B = (Bij). To establish
the convexity of the subset S consisting of those points for which B

is positive semi-definite, it suffices to show that if Bl and B2

denote two points in S then B3 = ABl + (1 - )\)B2 is in S for any

0 < A <1 (see Hadley (1964)). Now B, is in S if and only if

v'B3v > 0 for any k-vector v. But this follows immediately since

v'B.v = A2W'B.v + (1 - A)v'B.v (11)

3 1

1 ]
and both v Blv and v B2

2

v are non-negative.

C. Formulation in a Convex Programming Context
In order to regard (10) as a finite set of linear inequality
restrictions we temporarily consider only those vectors v generated
by a fine grid of space angles. Since the finiteness of this set of
vectors will later be dropped we need not be more specific.

The estimation problem then requires the minimization of the
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quadratic Q(B) subject to the large number of linear restrictions (10).
Thus, though we lack the usual condition that all variables lie in
the positive quadrant, this is just a quadratic programming problem
although for any reasonable grid the number of restrictions in (10)
would be extremely large. 1In what follows it is shown that by employ-
ing the method of 'Tangential Approximation' for convex programming
(Hartley and Hocking (1963) with a special pricing operation the
specification of the grid size can be completely avoided and, more
importantly, only a small number of the linear restrictions v'Bv > 0
will have to be formed. Furthermore these restrictions will be formed
only when needed, as specified by the algorithm.

An initial basis is required for the Simplex-like algorithm to be
used. This is achieved by adjoining the restrictions Bij'i - U,
i,j =0, ... ,k for some large y which must be specified. Thus the
problem proposed for solution is

minimize Q(B)
subject to
v'Bv > 0 (12)
Bij+u_>0, i,j =0, ... , k

In the Hartley and Hocking paper an algorithm is given for sol-
ving such convex, in this case quadratic, programming problems. The
algorithm proposes (i) a linearization of the original problem, (ii)
reverting to the dual linear problem, and (iii) employing a special
pricing operation with the revised simplex method. The essential

feature of the algorithm is that the linearization of the problem



need not be done in advance but only as specified by the pricing opera-
tion. For completeness, two basic points of the algorithm are
reviewed here in terms of the problem (12).
The first feature of the algorithm is a linearization which is
accomplished as follows. Introduce the new variable z defined by
z = -Q(B) and replace problem (12) by the equivalent problem
maximize z
subject to
v'Bv > 0 (13)
Bij +puy>0 ,1i,j=0, ... , k
QB) +z <0
The linearization of problem (13) is now completed by replacing
the convex restriction Q(B) + z < O by the set of tangent planes of
the form
k
QBN ¥ B (38 By = By + 2 <0 (14)
where the points B%* are as yet unspecified but are conceptually the

points of a fine grid imposed on the (kzz)—dimensional B-space. The

partial derivatives are obtained from (1) as
N

oE 38, .
3Q(B)/¥B,, = -2 I (y_ - E(y.)) (Yt)/ 813 (15)
H g=1 © t
where
Fl i=j=0
*it =0
dE(y )/38,. = |FieXje 0T < (16)
t ij 2
X, 1=j>0 .
L. 1t



]
W

For computational convenience it should be pointed out that

Q(B*)/BBij = =2 Resij R 7))

where Resij is the difference between the right and left sides of the
(ij)th normal equation for the regression model I(1l) when the left
side is evaluated at B%,

The second point of the algorithm which warrents a review is that
of the use of the dual problem. The problem (13) with the restriction
Q(B) + z < 0 replaced by the large set of linear restrictions (14) is
now a linear programming problem having associated with it a dual
linear problem, see Gass (1964), which will be solved. Rather than
develop a cumbersome notation it seems better to display the dual
problem in a linear programming tableau. For this purpose it is con-

venient to think of the (kzz) regression coefficients Bij as being

numbered from 1 to n = (k;Z) in the following order
(800,810, ecc,BkO,Bll,o..,Blk,n..,Bkk) . (18)

The tableau in Table 1 is symbolic in the sense that columns 1
and 2 simply give the rules for generating a tangent plane restriction
of the form (14) for given B* or of the form (10) for given vector v.
Thus rows 1 through n+l in columns 1 and 2 are just the coefficients
of the variables Bij and z in the linear restrictions (14) and (10).
Row 0 of the tableau is just the negative of the constant term in the

linear restrictions. Columns S, through Sn are self-explanatory.

0 +1
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1
2 S0 Sl Sn n+1
k 30( g%
0 Q(B*) - I 3%£—~2’B§, 0 1| - -u 0
i<§=0 “"ij J
1 * -
3Q(8 )/asOO 0 0 1 0
. Y - 0
* [ ] L] L]
k+1 3Q(B )/askO 0
+2 3Q(B*) /38 —v. 2
11 1
L] _2Y1V2 ] . . L]
. —2vlvk
L ] _ 2
V2
n 3Q(B*) /3B ~%lolo -1
kk k
n+1 1 0 olo 0 1

Table 1. TABLEAU FOR CONVEX PROGRAMMING




D. Solution of the Problem

Either the original linear problem or the dual problem described
by the tableau of Table 1 can theoretically be solved by the Simplex
method. It is clear, however, that even for small problems and
reasonable grid spacings on the B-space and on the space angles to
generate linear restrictions of the type (14) and (10) the number of
restrictions in the original problem, or else the number of columns in
the dual problem, will be extremely large.

In this section it will be shown that by solving the dual problem
by the revised Simplex method with special 'pricing operations' the
actual formation of the tableau is avoided. An understanding of the
Simplex method is assumed and the emphasis will be on the special
pricing operations. For information on the simplex method see Gass
(1964) or Dantzig (1963).

At any stage of the simplex iteration, say the sth, a basis matrix,
say AS consisting of n+2 columns from the tableau, is reduired. More
precisely its inverse A;l is required. To start the iteration the

.S is used. It is clear

matrix A. consisting of columns S n+l

0

-1
that A0 = AO.

0251

Assuming that the sth stage of the iteration has been reached the
matrix A;l is available. The simplex method must now determine if any
column of the tableau is eligible to 'come-into' the basis replacing one
of the current columns and hence yielding a new basis As+l' The usual

computation required for this step is that the scalar product of the

first row of A;l, called the pricing vector, with any column from



the tableau is formed. If the result of this pricing operation is
positive then the column is eligible to come-into the basis. For
columns of the type S

through Sn+ this presents no problem, and

1 1

column S0 is always in the basis. However, the remaining columns are
not explicitly formed and so a special pricing operation must be used.
It is shown in Hartley and Hocking (1963) that among all the
vectors which could be formed by applying the rules in column 1, the
one for which the pricing operation yields the largest value is just
that one for which B?j’ in the order given by (18), are given by the
corresponding elements of the pricing vector. That is, if the pricing
vector is designated by
(1,pgs000sP 5P 1) « (19)

B Further, it is shown

then let 630 = Py» BTO = Pyo cees ﬁk =P, -
that the scalar product of the pricing vector with the vector from
column 1 yields
Popg T APy oec 5 P - (20)

Thus the special pricing operation to be applied to the set of columns
corresponding to the tangent planes requires only the evaluation of
(20) for the current pricing vector. If (20) is positive the column
with Bij given by (19) is generated and brought into the basis by the
usual simplex iteration.

Now consider the problem of determining whether or not any column
of the type 2 is elegible to come-into the basis. Denoting the ele-

ments p, ., through P of the pricing vector by Bij with the

correspondence described above, the usual pricing operation applied to



a column of type 2 for arbitrary v yields

1 J 1]

Denoting the symmetric matrix of Bij by B*, it is apparent that the

vector is eligible to come-in if

1T B%x,v,v, = v'B#y (22)
1j ij 1 j

is smaller than zero.
It is known (Courant and Hilbert (1953)) that the smallest value
of (22) among all v such that v'v = 1 is given by the smallest char-

acteristic root of the matrix B*, say A Thus if X, is negative

1° 1
(21) is positive and at least one column of type 2 is eligible to

come-into the basis. It is also known that (22) takes on the value

Al when v is the normalized characteristic vector corresponding to A

1’
These assertions are proved following.
To determine the vector v such that v'v = 1 and v'B*v is a

minimum, form the Lagrangian

L(v,A) = v'BAv - iv'v . (23)
Then set

AL(v,A)/3v = B*v - Av = 0 , (24)
or

(B* - AI)v = 0 . (25)

Then A is certainly one of the characteristic roots of B*, and v is the
corresponding characteristic vector. But from (24)

v'B*v = viiv = av'v = A, (26)



so that
min v'B*v = min A = Al . (27)
Thus the special pricing operation to be applied to columns of
type 2 consists of determining the smallest characteristic root, Kl’
of the matrix B*, If A, is positive then none of these columns is

1

eligible. If Xl is negative then the normalized characteristic vector

v corresponding to A, is determined and this vector is used to gener-

1
ate an incoming column according to the rules in column 2 of the
tableau,

When none of the pricing operations succeeds in finding a column
eligible to come-into the basis the iteration is terminated. The
current pricing vector then yields the desired estimates of the regres-

sion coefficients, again using the correspondence described by (19),

with -p_., giving the optimal value of Q(B).

E. Computational Considerations
It will usually be worthwhile to first compute the solution to the
unrestrained least squares problem. This can be done by one of the
following two methods of which the first will usually be preferable:
(i) Solve the system of (kZZ) linear normal equations of the
unrestrained least squares problem (see (35) below).
(ii) Solve the above linear programming problem ignoring column
2 of the tableau but terminating when P41 + Q(pl,...,pn)<e
for some moderately small positive positive €. The pricing

vector at this point yields, with accuracy depending on the
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choice of €, the unrestrained least squares estimates of the Bij'

If the unrestrained solution yields a positive semi-definite
form no further work is needed. If not, the unrestrained solution
will provide a useful preselected basis matrix in the linear program-
ming process using the full tableau.

In case (ii) the linear programming cycles are, therefore, simply
continued, inspecting both columns 2 and 1 in the pricing operation.
In case (i), however, the unrestrained solution must be used to
specially compute a preselected system of n+2 column vectors for the
basis. The construction of this preselected basis matrix, say A%, is
achieved by forming a set of tangent planes to the convex surface Q(B)

~

in the neighborhood of the unrestrained solution, say B. AS will con-

sist of columns S0 and Sn+1 from the tableau separated by n columns

formed by computing column 1 at n appropriate points B*, A detailed
procedure for constructing Ag is discussed in the example problem at
the end of this chapter.

This approach requires of course that Ag be non-singular. There
does exist the possibility that the surface will be rather 'flat' in
some large S6-neighborhood of é or that some of the n points B* at
which the tangent planes are constructed are selected too near é: Both
of these situations would yield tangent planes which are essentially
parallel and consequently a singular A6° Also the inverse of this
matrix is demanded by the algorithm and must be computed.

Experience with the application of the algorithm to small trial

problems indicates that procedure (i) should substantially reduce the
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number of linear programming cycles required for solution. However, a
slight risk of encountering excessive preliminary calculations, because
of a singular A%, must be accepted. These calculations are again dis-

cussed in the example problem to follow.

F. Properties of the Estimates

The algorithm discussed above describes a method for finding a
point estimate of the regression coefficients satisfying a convex
restriction. Following is a summary of some statistical properties of
such estimates.,

1. The minimization of the residual sum of squares, Q(B), in the
convex region S is identical with determining that point B* in S which
is 'nearest' to the least squares estimator é. The concept of 'nearest'
refers to the metric in which the elements of é are independently dis-
tributed with equal variance. (Lewish (1963)). This result will be
derived as a starting point for the discussion in Chapter IV.

2. If S is convex apd the true parameter B is in S, then

(8% - B)'(8% - B) < (8 - B)'(8 - B) (Lewish (1963) (28)

3. As a consequence of property 2,

E(B% - 8)'(8% - B) < E(B - B)'(B - B) (29)

or
n

MSE(B*) < I Var(éo) (Lewish (1963)) . (30)
1 N | *

[ I =]

i
4, The point estimates are clearly maximum likelihood estimates
2 .
since the likelihood is proportional to exp{-Q(B)/20”} where Q(B) is

minimized within the restricted parameter space BeS. The estimates are
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then consistent since this is a property associated with restricted
maximum likelihood estimation; see Kendall and Stuart (1961).
5. The estimators are functions of a minimal set of sufficient

statistics. To show this write Q(B) in the form

Q(B) = Reg(B - B) + Res(Y) (31)

where Reg(é - B) (é - B)'X'X(é - B) is the classical regression com-
ponent involving only the unrestricted least squares estimator é and
Res (Y) = (Y - Xé)'(Y - Xé) is the 'residual' which does not involve
B. The minimum of Q(B) in S is, therefore, attained at a parameter
point which only depends on é and the latter represent a minimal set
of sufficient statistics. There then result the optimality properties
based on minimal sufficiency; see Rao (1965).

6. An exact confidence region with confidence coefficient 1 - «
can be computed as follows: Consider the customary confidence region
R given by

Reg(é - B) i_nRes(Y)F(a;n’N~n)/(N—n) . (32)

In the present case an exact confidence region for B is then
clearly given by the intersection of S and R, i.e., by BeS R. (In case
the intersection is empty no statement about B will be made.) Since
this confidence region is based on minimal sufficient statistics it
enjoys the properties described by the 'intersection principle' intro-
duced by Roy and Bose (1953). (This region forms the basis for the
results in Chapter III.)

7. Further properties are described by Hartley (1963) and the

distribution in the case of a single relevant restriction has been
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derived by Hocking (1965).

It should be mentioned that the above properties were not devel-
oped for the particular estimator B* derived in this chapter. Rather
they are properties depending only on the convexity of a restraint

space and are enjoyed by any such estimator.

G. A Numerical Example
As an example to illustrate the algorithm the following problem

is considered. It is desired to estimate the coefficients in the

model
E(y,) = B,y + B %X, . + B,.X
t 00 1071t 2072t (33)
+ B 2 + 28 . x. . x, + B x2
11%1¢ 12%1e%2c T P22%2¢
subject to the restriction that the matrix
s o [P Pi2
- g 8 (34)
12 22

be positive semi-definite.
A central composite design yielding 9 data points was selected
for estimating the 6 coefficients of this second-order response sur-

face. The date are shown in Table 2.




[
Ln

t *1t Xt Ve

1 -2 0 0.8
2 -1 -1 13.9
3 -1 1 10.1
4 0 -2 41.8
5 0 0 2.0
6 0 2 42,2
7 1 -1 9.7
8 1 1 13.9
9 2 0 1.4

Table 2. Data

The unrestricted least squares solution, ignoring the restriction

(34), was obtained by solving the normal equations

X'Xg = X'Y (35)
where
9 0 0 12 o0 12
0 12 O 0 o 0
0 0 12 0 O 0
X'X = R (36)
12 0 0 36 O 4
0O 0 O 0 16 0
12 0 O 4 0 36
E _
(X'y)' = (135.8,0.8,1.2,56.4,16.0,383.6) , (37)
and

B' = (b ,sbynsbynsbsq b, ,b

00°P10°P20°P11°P12:P22) . (38)

The solution is

~

B' = (2.112, 0.067, 0.100, -2,246, 1.000, 9.979) .(39)
The negative estimate of Bll violates restriction (34) and

requires that the convex programming algorithm be employed. Then let
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z=-Q(8) = - I {y,_ - E(y)) (40)
t=1
and let
i = 10. (41)
The convex programming problem is
maximize z
subject to v'Bv > 0
Bij +10 >0, i,j = 0,1,2 (43)

z+Q(B) <0 .
The tableau for this example is spelled out in detail in Table 3.
The vector B* used to generate a typical column 1 if desired is
obtained from the pricing vector for the current iteration with the
correspondence described in (19). The vector (vl,vz) used to generate
a typical column 2 if desired is just the normalized characteristic
vector corresponding to the minimum characteristic root of the current

B matrix given by

B* = . (43)
A2
A comment on the choice of the constant p is also in order. The
constant must be chosen so that the optimum value of every Bij exceeds
~u. Thus a large positive p is suggested. But if p is chosen to
be extremely large in comparison with the size expected for the coef-
ficients the number of linear programming cycles is greatly increased.
Here it was decided from observation of the least squares solution (39)

that u = 10 should be satisfactory.
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The positive semi-definite restriction on B includes the restric-
; ‘ d .0 R I
tions Bll 3_0 an 622 > so that the restrictions Bll 2 =,

B

> -u are not necessary. This is reflected in columns S4 and S6'

Similarly the first element of column S7, in general Sn+l’ may be

22

replaced by any legitimate lower bound on Q(B). In this case, since
the unrestrained minimum of Q(B), namely Q(B) = 0.194, is available

from the least squares solution, it was used.

Col
Row O 1 2 S0 Sl S2 S3 S4 S5 S6 S7
9 A
ol o Zyi — BR(X'X)p* o |1 |-10}-10{-10l0 {-10l0 |.194
=1
* * [
1| of2098s, + 1288, + o Jodl-1{o0] olo] olo]o
oo
12%,, - 135.8)
2| of2t12ef, - .8) o fofo 1] olo] ofo |0
3| of2(12es, - 1.2} o lololo]|-1lo] olofo
2
* * - -
4| ofatizer + 36ex +| v Jo o o | of-1f ofo |0
* -
4B, - 56.4)
* - - -
5| o]|2(168%, - 16} 2vv,f0 fo o | ofo]-1fo |0
) ,
% % - -
6| of2(1285 +4s5, + [~v5 o |0 Jo | ofo| of|-1fo0
* -
368%, - 383.6)
71 111 0 ololol oo olo |2z

Table 3. Example Tableau

The vectors Sl’ .a.,S6, in general Sl’ '°"Sn’ correspond to the

restrictions Bij > -y, i#j, and Bll >0, 822 > 0, and are used only to



obtain a starting basis if none is available. They are only shown for
completeness here as they were not used in this example. Instead, the

unrestrained optimum (39) was used to generate an initial basis using

n= (kZZ) = 6 columns of type 1 computed using Bij the values
€oy
* =
Birgr = byoge * 21Ve st (4

for a particular pair of subscripts i'j' with

% =
B, = by (45)
for all remaining coefficients, where Cre is the tth diagonal element

. th L
of X'X, B%*,,, represents the element in the t osition of the vector
i'j P

B*, and ¢, was empirically chosen equal to 1. The six tangential plane

2
columns arising from this substitution for t = 1,...,6 were then mon-
itered in the computer for rank-degeneracy. In case rank-degeneracy
had been found the program (see Chapter III) provides for increasing
the value of ¢, sequentially by a unit at a time, but for this example

2

an acceptable basis was found with €, = 1. Although this procedure
commences from the empirical formula ((44),(45)) it will always pro-
vide an acceptable preselection and any shortcomings of this formula
will merely increase the number of cycles in the linear programming
process. It is expected, however, that such increase would be slight.
Excessive computations resulting from rank-degeneracy would appear to
be the larger drawback of the procedure, although such a situation

would arise only rarely. In the event of such an undesirable situa-

tion one may of course resort to the method (ii) of section E,



beginning the linear programming iterations with the basis consisting
of columns S0 through S7 of the tableau.

The 6 columns generated from formula ((44),(45)) along with col-
umns S0 and S7 of the tableau constituted Age The inverse of this
matrix was then computed and the linear programming iterations were
begun. Table 4 shows the solution of the example, exhibiting the
initial B* from As_l, the result of every Sth iteration, and the solu-

tion. Termination of the iteration occured when neither P, + Q(pl,.

> 0, where e, was chosen to be .001.

Q(pl,ea.,p6) nor Al exceeded ¢ 1

1

The solution as presented in table 4 prompts the following
comments. The choice of €, gave column 2 a chance to come-in early
here cgming into the basis on iteration number 15. Then between
iterations 20 and 25 a tangent plane of the column 1 type came in to
replace column S7 with rather dramatic effect. Beyond this stage it
is seen that the algorithm works quite diligently to bring ~P and Q
together, all the while keeping the matrix B near definiteness. It is
also clear that the number of cycles required to solution is very
sensitive to the choice of € ~-Finally, the estimates of 811 and 822
are observed to be positive, and the determinant of B is -.0000029,
or effectively zero.

This example affords a comparison between the procedures (i) and
(ii) of section E. Using (ii), which simply solves the problem by
starting with the basis 80,81,0.0,87, a total of 155 iterations were

required. Using (i) the unrestrained solutions were used to construct

an initial feasible basis as described in the example and only 80



TABLE 4

Solution of Example

Iteration

Number - py P, Py Py Pg Pg -Py Q

AWﬂoad>waH 1.347773 +233553 .266553 .081414 1.499972 10.306414 - cm=o

5 1.738254 .233456 .266456 ~,064625 HQHwObcw 10,159443 ,194000 2.070711

10 2.583632 .233245 . 144876 =-.389432 1.015632 9.849895 ,194000 .962953
15 1.207977 .039473 .,108480 .142834 1.248287 10.350190 .194000 3.612505
20 .882988 =~-.132143 -,047069 ,105043 1,040852 10.244894 ,194000 4.075216
25 3.440911 -.422496 -1.439664 -.033088 .240982 8,966571 .558760 67.936867
30 1.026051 .075972 .235134 .099474 1.013246 10.292798 .655206 2.553969
35 1.638020 -.003707 -,004751 .083045 .916986 10,116644 1.219540 2.150959
40 1.381339 .027651 .165868 .089611 .955306 10.183857 1.444102 1.,738089
45 1.393151 .110643 .076891 .095199 .984033 10.157754 1.525267 1.736052-
50 1.463203 .007878 .067221 .084341 . 926254 10.123599 1.5929% 6 1.795668
55 1.508592 .074923 .127114 .086674 .936929 10.127281 1.617844 1.748942
60 1.372265 .079259 .083392 .095815 .988720 10.187396 1.645202 1.696255
65 1.405463 .079300 .100507 .090187 ,958248 10.180682 1.657626 1.670604
70 1.393125 ,068104 .090332 .089927 .956650 10.176368 1.663322 1.669515
75 1.390199 .063924 .104766 .088501 .949497 10.186827 1.665030 1.667416
80 1.405676 065765 .108597 ,088602 .949611 10.177615 1.665903 1.667940

(Solution)
81 1.400070 .067797 .102001 .088921 .951372 10,178818 1.666003 1.666761
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iterations were required. Further acceleration might be made by
improving upon the method of construction of the initial basis, but
it is doubtful that a substantial gain would be made.

Another method for accelerating convergence for a problem of this
size is that of expressing the coefficients of the linear terms in
(33) as linear functions of the elements of the B-matrix (34). This
is easily done by considering the unrestricted minimization of the
quadratic form

{(Y - X'BX) - b'X}'{(Y - Y'BX) - b'X} (46)
considered as a function of the elements of b for a given B. The
solution is
b = (X'®) X' (Y - BX). (47)

The result of this initial calculation is the reduction of the
number of coefficients which must be estimated from 6 to only 3. Con-
sequently the size of the tableau is reduced roughly by half and the
number of iterations required for solution might be decreased ac-
cordingly. This approach, however, has not been pursued since its
advantage is reduced as the number of coefficients in the problem is
increased, and even that advantage may disappear when the amount of

requisite preliminary calculation is considered.
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CHAPTER III

THE COMPUTER PROGRAM FOR MODEL SAMPLING

The computer program for the restricted estimation problem in
Chapter II was initially written for the IBM 7094 computer on the
campus of Texas A&M University and was an extension of a program by
Claypool (1966). Since the problem of model sampling necessarily
includes the estimation problem, only the program for model sampling
is herein exhibited. The subroutines INVEC, NETPRC, OUTVEC, and
BNVERS were abstracted in their entirety from Claypool's original
program. The remainder of the program, however, is entirely the work
of this author and the whole model sampling program is considered by
him to be a vital part of the dissertation.

The program listed following is designed for the IBM 360, MOD 40
computer on the campus of West Texas State University, where the
latter stages of research on this problem were carried out. Comments
to the right of the program proper are intended to illustrate the
role of the indicated piece of the program in the solution of the

problem.
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CONSTRAINED RUN-OUT COST ESTIMATION

With the completion of the Gemini program and the availabiliby of
spacecraft systems cost data the problem of run-out cost estimation for
advanced spacecraft prograns is becoming an increasingly important area.
The development of analytical techniques for analysis and processing of
cost data are becoming increasingly complex in order to obtain a level com-
parable with the data which is presently available. The material presented
in this paper is an extension of some earlier work which was accomplished
under the NASA Research Grant. Initially the problem of estimating
spacecraft run-out cost was one of using a least squares fit to a pre-
selected set of percent cost -~ percent time curves which are defined on
the unit interval passing through the origin and through point (1, 1).

By taking generalized curve forms of this type it is then possible to take
a partially completed cost - time history of a spacecraft subsystem, sort
through the group of curves until the best weighted least squares fit

was achieved between the partial curve and the complete curve. After
this is accomplished, it is possible to make a projection of the partial
curve to its completion date. This type of technique will work very well
for a number of cases of cost - time histories; however, it is possible
to obtain data points such that when they are applied to a standard group
of third order polynomials that the run-out cost will be less than some
previous cost during the course of the program. That is to say the under
normal least squares methods of fitting any general set of data points to
a general class of third order or high order polynomials it would be

possible to obtain maxima in the range zero to one. By constraining the




|

polynomials such that there are not maxima inside the interval zero to

one it would be possible to provide run-out cost estimates which are more
realistic from a real-world standpoint. It should be pointed out that a
constrained least squares estimate must necessarily have a larger error

sum of squares than one which is not constrained. Therefore, it is to

the advantage of the analyst and to the model builder to use the minimum
number and minimum level of constraints which are necessary to assure the

type of general performance required from an algorithm. The following approach
was developed to conform to the above requirements.

In finding an equation that best fits the data points for percent
cost vs. percent completion time, some arrangement of data points could
cause the slope of the equation to be negative in the region of interest,
which is the decimal percent time between zero and one. This would mean
that the model would be predicting that cumulative cost would decrease
with time, which is hardly feasible.

Therefore the constraint that the slope of the curve must be non-nega-
tive for the domain of the function must be imposed on the model,

To apply the constraint in a continuous form for the domain of the
function would needlessly burden the solution and increase the complexity
of the problem. Therefore, a check of the slope for sufficiently small
intervals from zero to one will suffice. The computer program to be sup-
plied NASA - MSC checks at intervals of 0.05. To change the interval size
would be a routine matter.

The check to insure a non-negative slope would require that:

B+ 20(x,) + 3D(X)% > 0

3 3
VX.e 0 <X, <1

3 3




For each point (denoted by X,) that does not meet the inequality, a

1

constraint term must be combined with the least square function. The

term will be:
2

A, (B + 2CX, + 3DX, - U

3 g * 3%y =0
The term Uj is a slack variable, and either Aj or UJ must be zero, depend-
ing on the problem. Therefore each combination of Uj or Aj equaling zero

must be tried. These numerous required caiculations are the reason that
each point 1s not constrained to be non-negative immediately.
Thus, the function to be minimized is:
n

F= I (A + BXi + CX2

3 2 P 2
+DX; -~y.,)° 4+ I A,(B+ 2CX, + 3DX, - U,)
o1 i i~

jm1 3 3 3773

where p is the number of points that were associated with a negative slope.
Taking the derivative of the function in respect to A, B, C, D, and

A (taking in respect to U is not beneficial) respectively, and setting

them equal to zero gives the following set of equations.

2 3 oy
mA + BIX, + CIX; + DIX] Y,
ATX, + BIX> + CIX> + DIX’ + IA = IX,Y
1 1 1 i i 14
2 3 4 5 2
ATK] + BIX] + CIE; + DIX] + I2A X, IXY,
3 4 5 6 W3
AIX] + BIX; + CZX] + DIX; + I3\ X, = XY,
B+ C2%, + D3X> - U =0
h h| h|

For =1, 2, ..., P

After solving for every combination of A, and U, being set to zero, the

3 3

solution for A, B, C, & D giving the minimum sum of squares 1s chosen.




After this, another check must be made to insure that this combination
of coefficients does not allow the slope to be negative in the region of
interest. If the slope is negative at any point, this point(s) must be

added to the constraints and the operations repeated.




STATISTICAL SEPARATION OF
VARIABLE AND NON-VARIABLE COSTS IN THE
GEMINI SPACECRAFT PROGRAM

by Glen Self

Introduction

A major task during the last phase of this research grant has been to
determine statistically oriented methodology which would provide a separation
of the variable and non-variable or recurring and non-recurring costs asso=~
ciated with the subsystems of the Gemini spacecraft. Due to previous ex-
perience under other cost research contracts NASA/MSC preferred that a
primarily statistical approach, which would be relatively insensitive to
any assumptions, be made by the analysis performed under this phase of the
grant, Due to the large and relatively complete file of subsystem cost
data which was made available through NASA/MSC to the researchers on this
grant, it was possible to perform analyses of the data which had previously
been abandoned due to the lack of reasonable and consistent data, Through
the efforts of Mr, Aubin Ferguson in ASDT/MSC it was possible to compile
a data bank for this analysis. In order to demonstrate the methodology
being developed by Texas A&M Univ;rsity in this area of cost segregation,

a single subsystem, subsystem, Number 37, the reactant supply subsystem,

was chosen on a more or less random basils for purposes of demonstrating the
techniques of methodology developed herein, The basic approach is to maxi-
mize the correlation of the various types of hardware deliveries with the
cost categories available, This relationship is maximized through a simple
correlation routine which will be described in more detail in those sections
which follow, After this correlation routine has been used to establish

the appropriate statistical lead-lag relationship within these data, the
1




data are adjusted for lead-lag relationships in order that standard multi-
variate regression analysis could be performed to provide a predictive
type model. In order to achieve even better and more realistic results the
use of a convex programming technique was employed to determine both
maximum and minimum of those costs which could be called variable during
the program. A development of these techniques along with illustrative
examples will be presented in the text which follows,

Establishing Lead-Lag Relationships Within the Hardware Delivery vs, Cost

Data Picture

The basic philosophy of this phase of research was to relate physical
hardware deliveries to those cost data which had been collected. One of
the immediately obvious requirements upon inspection of the two groups
of data was that there was a lead-lag relationship that appeared to
exist between the hardware and the cost where both were being represented
as discrete functions over time, In order to test the theories summarized
above in relationship to variable and non-variable costs associated with
spacecraft subsystem development and production, subsystem 37, reactant
supply subsystem was selected primarily due to the fact that it was pro-
duced by one major sub-contractor and that the hardware delivery data was
in a relatively useable format, In this particular subsystem there were
ten different type of hardware deliveries plus a total accumulation of
deliveries, These deliveries could be pin-pointed in time by delivery
dates to the prime contractor, McDonald Aircraft Corp. The type of sub-
systems being considered were oxygen subsystem, the hydrogen subsystem,
the dual pressure regulator, the hydrogen transducer, the oxygen transe
ducer, the hydrogen pressure relief wvalve, the oxygen pressure relief valve,

the low-pressure dual valve and the oxygen and hydrogen sybsystems were
2




broken down into both long and short missions with the missions 5 and 7
being the long duration missions and missions 6, 8, 9, 10, 11 and 12
being the short duration missions in the Gemini program,

The non-zero cost available to this part of the study include the
following: engineering, manufacturing, quality control, tooling, admini-
strative cost by the prime contractor for sub-contractor programs, material
and minor sub-contracts, ground support equipment, spares and major sube
contractor costs. These data were analyzed first at the major sub-contractor
level. This was primarily due to the data being available on a monthly
basis as opposed to those data being available for the major sub-contractors
on a bi-annual basis, It was felt that if a statistically significant
correlation was to be determined among deliveries and costs that the more
detailed data would provide the better chance of establishing correlation
patterns between the two data groups., Even though quarterly data were not
used in this particular phase of the study, one advantage to its use in
future studies might be due to the fact that it would have an averaging
effect upon the bookkeeping being conducted on these hardware programs,

The advantage to the averaging effect would be the elimination of some
rather systematic variation which tends to indicate that the accounting
records are adjusted toward the end of the year in order to more properly
relect the total costs expended. The NASA data collection has tended to
eliminate much of these over-estimation tendencies on the part of the
prime and sub-contractors; however, quarterly grouping of the data might
still further reduce variations of this nature, The cautions still exist
that gross groupings would tend to eliminate the sensitivity of the data
to the analysis technique being discussed in this section of the report.
It should be pointed out that during the routine ¢ompilation of these data

3




that were used in the analysis from various sources obvious inconsistencies
were discovered, Based upon the knowledge of the mechanism of production
and procurement, these were adjusted in a rational manner whenever possible.
Generally, the first cost data point in each category was eliminated be-
cause it appeared to be an accumulation of some six to twelve months of
cost being reported for the first time in the official bookkeeping setup

for the cost reporting system on the form 533 for the prime contractor,
McDonald. In order to avoid discussion of the specific data, the numerical
values associated with costs and deliveries will be submitted under separate
cover to NASA/MSC/ASTD, but will be referred to in this report with cor-
relation and regression coefficients provided the reader,

From the standpoint of hardware deliveries and the fact that pri-
marily the McDonald effort was being reviewed, another factor in the
hardware delivery picture seem to be most significant and relevant to the
cost analysis being performed., This was the existence of a number of rework
items being returned to the vendor, For example, there were a total of
110 parts delivered and of those 50 were pointed out as having been in
rework status and having been returned to the subcontractor on specific
dates during the program. Due to McDonald's involvement in the return
of hardware items to Airesearch, it was decided to include these events
as part of the data analysis in an attempt to define the causal relation-
ships for cost as nearly as possible,

In order to make the derivation of the recurring and non-recurring
cost as statistically oriented as possible, the lead-lag relationships
were analyzed using a correlation type analysis, This correlation was
made between the observed delivery dates and the observed cost data,

Since the cost data extended from August of 1962 up through November

4



of 1966 and since delivery of hardware began in December of 1964 and termi-
nated in August 1966, it was not obvious to the casual observer as to what
the appropriate lead-lag relationship should be between the two groups of

data. Therefore, a simple computation as shown in Formula 1 below

n n n
r. = I §,d, - £ $.. I 4
J S e s W I T W 1=1,2, ...n
T, T
3y 44 (13 =1, ..., n-ntl

where j is an index of the starting point in the cost data series, This
provided the analyst with a correlogram type analysis of the patterns which
might exist in the data. Figure 1 displays the correlogram analysis for
engineering cost vs. total deliveries. The particular type of pattern

that is desireable within this analysis is one which has a relatively large
positive correlation coefficient with much smaller values of correlation on
either side. For example, if a lag of 10 months had a correlation of .9
with the lag at 9 and 11 months having a correlation near zero or negative,
then it could be assumed that the correlation analysis had discovered a
significant relationship between the two patterns observed in the cost data
and the number of hardware deliveries on a time period by time period basis.
The interpretation of these correlograms can be related to some degree to
time series analysis of auto regressive data. That is, as the correlation
coefficients cycle from large positive values to large negative values and
back again, this tends to indicate a phasing-in and phasing-out of the
agreement of the two patterns within the time periods being observed.
Therefore, it can be seen that the desireable pattern described above would
indicate a relatively good "fit'., By using this technique to establish

lead-lag relationships it is possible to avoid the introduction of subjective

|
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estimates as to what these relationships might be. There is one small
statistical danger in this type of approach, that is, with a limited number
of deliveries the correlations might be expected to behave irrationally
and perhaps give some false indication of correlation where, in fact,

none did exist., 1In order to avoid this type of occurraence, Figure 2 has
been included in this report for reference in case individuals choose to
perform their own analysis of these types of data., A complete correlation
analysis of all hardware types vs, all categories was performed on the
data for Subsystem 37, In general, these analyses gave favorable results
such that the lead-lag relationships could be established directly and the
analysis of cost continued,

Computation of Variable Costs Through Constrained Regression

The continuation of the cost.analysis utilized simple multiple linear
regression techniques without weighting of the data except as that imposed
by the restricting the constant term to be zero and requiring all co-
efficients to be positive in the equations. This is a legitimate mathe-
matical programming approach to model building and does not permit the sub:
jective mode to be introduced in the real sense, Initially, simple linear
regression models were used to analyze the data, The results of this
analysis was relatively good in that the explained variation of the re-
gression analysis for all types of cost approached ,8, that is to say,

807% or better of the variation observed in the cost data could be attributed
to the hardware delivery variables which were included in the analysis as in-
dependent variables, By introducing time as an independent variable in the
same simple linear regression case, it is possible to obtain an explained
variation in excess of 907 in some of the cost categories which is a

general indication of the time dependency of cost associated with these

types of programs, Through the use of those techniques already developed,

7
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it has been possible to establish relatively good separation of variable

and non-variable costs which do not appear to have very high sensitivity

to any of the basic assumptions used in the analysis; however, by one more
additional constraint of a physical type which will permit the determination
of a maximizing or minimizing function with respect to non-variable costs
over time, it will be possible to even more completely define the separation
of non-variable and variable costs,

The research reported in this section of the final report has in
dicated the value of detail cost collection data during the course of pro-
grams such as Gemini, It is made possible a rather thorough look at those
data which were collected and indicated types of data which should be
collected on on-going and future spacecraft programs in order to continuingly
up-grade cost estimation capability in both the long term subsystem and
component level cost prediction techniques. It is visualized that a detail
segregation of variable and non-variable costs will permit more exacting
administration of extensions on production contracts and in the hardware
procurement effort in general, The approach presented in this report has
been one of achieving the best prediction techniques possible, the extension
of the use of these results have been indicative as a part of the research
effort; therefore, the application of the methodology derived by this

research effort is left to the reader.




COMPUTER PROGRAM FOR LEAD-LAG CORRELATION ANALYSIS

$J0B 96126241474 2 1000 GLEN SELF CORRELATION ANALYSIS
$1B8BOX O1-F
$EXECUTE AGGIE

$IBFTC YYYYYY
DIMENSION X(100), Y(100),R{100), LAG(100)
READ(5,50) M;N
o M = NUMBER OF COST DATA POINTS, N = NUMBER OF DELIVERY DATA POINTS
50 FORMAT(20X,213)
DO 125 I=1.M
125 READ (5,100) X{(I),Y(]D)

c X{I) = MONTHLY COST DATA, Y{(I) = MONTHLY DELIVERY DATA
100 FORMAT {(2F5.0)
FN = N
LAG(1) = M=N
J = 0.0
K = 0.0

WRITE (6,103)
103 FORMAT (1HOy 10X, 24HCORRELATION COEFFICIENTS)

106 SUMX = 0,0
SUMY = 0.0
SUMXY = 0.0
SUMSQX = 0.0
SUMSQY = 0.0
NM = M-3
DO 102 1=1,N
SUMX = SUMX + X(I)
SUMY = SUMY + Y(I)

SUMXY = SUMXY + (X(I)=Y(I))

SUMSQX = SUMSQX + (X{I)=X{1))

SUMSQY = SUMSQY + (Y(I)=Y{(]))
102 CONTINUE

SQ1 = (SUMX#SUMY)/FN

RNUM = SUMXY - SQl

DEN1 = SUMSOX - ([SUMX#SUMX)/FN)
DEN2 = SUMSQY - ((SUMY#SUMY)/FN)
DEN3 = DEN1#DEN2

RDEN = SQRT(DEN3)

J=J+1

K = K+1

L = M-K

R{J} = RNUM/RDEN
WRITE (6,104} R{J), LAGI(JI)
LAG(J+1) = LAGlJ) -1
104 FORMAT (1HO, 22X, Fl0.64y 10X, SHLAG = 415)
IF (LAG(J+1)) 200,201,201
200 FN = N+LAG(J+1)
201 DO 189 I=1,M

TEMP = X(1)
X{I) = X{I+1)
X{M) = 0.0
Y{L) = 0.0

189 CONTINUE

IF(J-NM) 106,106,105
105 CONTINUE

sTap

END
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